It’s that time of year!

We’re heading out for our 2018 summer field season


June 19, 2018
Katie Sweeney



Well, Steller Watch team, it’s that time of year again! We are gearing up to head out for our summer field season to Alaska to study Steller sea lions. While we are away, we will not be present on our Project Blog or the Talk Forum. Our current workflow will still be live while we are away! We are hoping to be almost complete with this current set of images very soon since we plan on coming back in the fall with a whole new set of images!


We have several Steller sea lion trips happening this summer, very similar to last year: a research cruise to the western Aleutian Islands, a traditional aerial survey, and a resight cruise to the eastern Aleutian Islands and Gulf of Alaska. Unfortunately, this year we are not able to do our field camps. This will be the first time since our field camp effort began a couple decades ago that we will be unable to do field camps (except for in 2006 when field camps were on hold due to a law suit). Other science groups from the Alaska Fisheries Science Center are heading out this summer for field work, as well.

Western Aleutian Island Research Cruise:

This year’s cruise is very similar to last year. We will be on board the U.S. Fish and Wildlife Service’s R/V Tiglax for about two weeks surveying between Attu and Adak Islands. During this trip we will be conducting count surveys by boat, land, and air with our drone. We will also be looking for marked animals at all the sites we visit and visit those sites with remote cameras to collect more images for Steller Watch! We will be doing some work with pups to collect data to help figure out more about pup health in the Aleutian Islands. Finally, there will be a couple whale biologists on board with us to help look for whales in the area, including killer whales.

NOAA Twin Otter Aerial Survey:

Since 2006, NOAA’s Aircraft Operations Center has operated a NOAA Twin Otter for the aerial survey that will go from the Delarof Islands to the western Gulf of Alaska. This means they mostly operate out of Adak Island and Dutch Harbor. We even hope they’ll be able to check out Bogoslof Island, a volcano that erupted for over a year and has more than doubled in size. Will we see Steller sea lions, northern fur seals, and sea birds?

Eastern Aleutian Islands & Gulf of Alaska Resight trip:

We are not able to do field camps this year but luckily we are able to do a resight trip to look for animals that were marked on Ugamak Island, just last year. During this trip, we will just be visiting sites to look for those newly marked one year olds and marked adults beginning around Dutch Harbor and ending in Homer, AK.

A HUGE thank you to those of you who have contributed to Steller Watch! We’ll be back in the fall with many, many more images to share! 

I have been a biologist in NOAA Fisheries Alaska Fisheries Science Center studying Steller sea lion population abundance and life history for over 10 years. I am an FAA certified remote pilot and have been flying marine mammal surveys with our hexacopter since 2014. I earned my B.S. in Aquatic and Fishery Sciences at the University of Washington and my Master in Coastal Environmental Management at Duke University. 

Part II: Is that a healthy pup?

With a few measures we can check on the health of pup and find out about mom too


April 24, 2018
Brian Fadely


In my last post, I shared how we use pup weights and lengths to calculate a condition index to better understand the health of the pups. When we handle Steller sea lion pups that will be marked, we also collect blood, tissue, and fur samples. Collecting blood and other tissue samples allows us to evaluate health status in another way involving work in a lab. We look at blood chemistry and hematology parameters, to test for signs of disease, contaminant exposure, or other systemic concerns.

Some degree of clinical issues or disease is normal to find in any wild population; we’re interested in determining whether there is evidence of clusters of disease, contaminant exposure, or other concerns at a rookery or greater area. This can provide insight into local conditions that may help explain population declines or lack of recovery. Samples are collected while the pup is gently but firmly restrained by hand.

Collecting a blood sample from a restrained pup. The restraint board helps prevent wriggling so the procedure is safe for the pup and handlers.

The board that we place the pup on helps prevent wriggling so the procedure is safe for the pup and handlers. We looked at blood chemistry and hematology profiles of 1,231 pups sampled during 1998-2011 throughout Alaska. We found no indications that pup condition was compromised during their first month after being born, including pups within the declining parts of the Aleutian Islands (Lander et al. 2013).

Exposure to heavy metal contaminants (like mercury) is a concern since Steller sea lions are apex predators, or predators that feed at highest trophic level. In other words, Steller sea lions eat prey that are high up in the food web. That means, if there are contaminants in an environment, the contaminants can bioaccumulate and biomagnify through the food chain. Exposure to high levels of mercury can cause neurological disruption that may impact health and consequently survival and reproduction. Pups accumulate mercury during gestation in utero (while they are a fetus in their mothers), and again once they are born and suckling milk from their mothers. In a project led by collaborators at the University of Alaska Fairbanks and Alaska Department of Fish and Game, we’re investigating the mercury burden of pups throughout their range in Alaska and Russia. We shave off a small patch of hair from the pups when we handle them and are then able to measure the mercury content. Specifically, we can figure out the mercury concentration the pup was exposed to from its mother over a period of several months during gestation.

The patch where hair was removed for a sample to measure mercury content is evident on this pup chilling with mom at Agattu/Gillon Point. 

We found that pups in some areas of the endangered western population had a higher mercury exposure than pups from Southeast Alaska (Castellini et al. 2012). The greatest exposure is shown by pups from the Gillon Point rookery on Agattu Island, with three pups showing exposure levels known to cause neurological effects in other fish-eating wildlife (Rea et al. 2013). If you look at the figure below, you can see the difference in mercury exposure (median values are shown by colored lines and average values by black lines) between pups from Agattu Island and other rookeries can be seen in this boxplot that was published in Rea et al. (2017).


We do not have direct evidence that this exposure to mercury during gestation leads to health consequences for the pups and their subsequent survival, nor that it impacts adult reproduction. But, these levels of mercury exposure do indicate that further research is necessary to better understand the role of contaminants in the ecology and biology of Steller sea lions.

I am a research wildlife biologist with NOAA Fisheries Alaska Fisheries Science Center in Seattle, in the Alaska Ecosystems Program where I’ve studied Steller sea lions and northern fur seals since 2000. My primary research interest is vertebrate physiological ecology, which at NOAA Fisheries translates into studying sea lion foraging behavior, health status, and body condition to help address conservation questions and wildlife management issues.

Part I: Is that a healthy pup?

Part 1: Studying the condition of sea lion pups


April 10, 2018
Brian Fadely


When we handle Steller sea lion pups that will be marked, we also check their condition and health status, similar to when you take your pets to the veterinarian for a check-up.  Collecting health data can give an indication of local environmental conditions, and allows testing of some hypotheses for the population decline.

Pups are weighed by holding them in a small hoop net and measuring with a digital scale suspended from a tripod. Photo by Kristen Campbell.

While we are handling the pups, we weigh them and measure their length and girth as indicators of condition. We look at these measurements relative to the weighing date (since we don’t know a pups birth date), as well as, their weight relative to their length. Both are used as indices of body condition and help us explore trends among pup measured across regions or over years.

Weighing and measuring pups is straightforward, as simple as suspending them from digital scale while nestled in a hoop net. Length is measured from the tip of nose to the tip of their tail, and girth is measured around the body just behind the front flippers.

A pup that fell asleep in the net while being weighed

Pups are born between late May and early July but half of the pups are born by June 10th. For consistency, we try to sample pups between June 20th and July 7th, which means we’re sampling them when they are 12-25 days old, but possibly 5-37 days old. At this young age, the size and health of the pup largely reflects the mother’s condition while she was carrying the pup, since about April. Pup condition can vary with many factors including age and size of the mother and the local foraging conditions she encounters, which we typically don’t have any way to directly assess.

Looking at pup measurements collected throughout the Aleutian Islands from 1990 to 2017, the weight of female pups (a total of 1,958 measured) has ranged between 33 and 97 Ibs (15 to 44 kg), or an average of 62 Ibs (28 kg). The weight of male pups (a total of 2,234 measured) ranged between 29 and 115 Ibs (13 to 52 kg), with an average of 75 Ibs (34 kg). Male pups tend to weigh about 11 Ibs (5 kg) more than females. Generally, pups grow just under a pound (over a third of a kg) per day.

Just as with human infants, we can compare the size of any pup against all others to determine whether they are relatively large, small, or about average. In the figure below, the sizes of pups from Hasgox Point on Ulak Island (white squares) and Gillon Point on Agattu Island (black circles) are compared to all other Aleutian Island pups (light gray circles) for females (F, left figure) and males (M, right figure). It’s evident that while some individuals are small or large compared to others, the size ranges of pups from these islands are similar to all others.

In these plots, each dot represents the weight of a single pup. The left plot shows females and the right, males. The two sites you may be familiar with are Hasgox Point on Ulak Island (white squares) and Gillon Point on Agattu Island (black circles). The light gray circles are all other pups in the Aleutian Islands.

Since we don’t weigh the pups on the same day and they put on weight each day as they grow, to compare pup condition over years or between rookeries, we create a condition index. The condition index compares the weight we collect to the weight we would expect to see on the weighing date, or to the weight expected for their length. This condition index is a ratio of the measured weight to the expected weight which is calculated from doing a regression of all pup masses by weighing date.

In the figure below is called a box plot (also called a box and whisker plot). This is a great way to visualize data. The condition index ratio we described above is plotted in the following two figures. Median values (black lines) are shown within the 25th and 75th data percentiles (boxes), and outlier values (black dots) are plotted outside of the whiskers (1.5 times the percentile range, showing data dispersion). This box plot above shows the data collected from female pups measured from 1994 to 2017 at rookery sites within the area we have remote cameras deployed in the Aleutian Islands. Essentially, if the observed and expected weights are the same, then the condition index ratio is 1.0 (the horizontal dashed line).


Values above that are interpreted as ‘better’ condition (they weigh more than expected for their length), and ratios less than 1 are ‘poorer’. Pups from Agattu Island rookeries tended to weigh less for a given length than did pups at Kiska or Ulak Islands, though overall there is not a great difference among these sites.


Alternatively, we can look at differences in pup condition over the years at specific sites or region. The box plot above shows the condition indices for female pups at Hasgox Point (Ulak Island) collected from 1994 to 2017. This data suggest that the pup cohort of 1994 was in apparently relatively poorer condition compared to later years, while cohorts since 2013 have been in relatively better condition.

All of this information are valuable pieces in the puzzle towards figuring out why Steller sea lions have not recovered in the Aleutian Islands. In the next blog, I will be sharing what we can learn from the different samples that we collect from pups along with weight and length measurements. Be sure to sign up for blog notifications by filling in your email and clicking the “Follow” button!

I am a research wildlife biologist with NOAA Fisheries Alaska Fisheries Science Center in Seattle, in the Alaska Ecosystems Program where I’ve studied Steller sea lions and northern fur seals since 2000. My primary research interest is vertebrate physiological ecology, which at NOAA Fisheries translates into studying sea lion foraging behavior, health status, and body condition to help address conservation questions and wildlife management issues.